指针和引用

初识指针

学习 C++ 的指针既简单又有趣。通过指针,可以简化一些 C++ 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的。所以,想要成为一名优秀的 C++ 程序员,学习指针是很有必要的。

正如您所知道的,每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址。请看下面的实例,它将输出定义的变量地址:

#include <iostream>

using namespace std;

int main ()
{
int var1;
char var2[10];

cout << "var1 变量的地址: ";
cout << &var1 << endl;

cout << "var2 变量的地址: ";
cout << &var2 << endl;

return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

var1 变量的地址: 0xbfebd5c0
var2 变量的地址: 0xbfebd5b6

通过上面的实例,我们了解了什么是内存地址以及如何访问它。接下来让我们看看什么是指针。

指针定义

指针是一个变量,其值为另一个变量的地址,即,内存位置的直接地址。就像其他变量或常量一样,您必须在使用指针存储其他变量地址之前,对其进行声明。指针变量声明的一般形式为:

type *var-name;

在这里,type 是指针的基类型,它必须是一个有效的 C++ 数据类型,var-name 是指针变量的名称。用来声明指针的星号 * 与乘法中使用的星号是相同的。但是,在这个语句中,星号是用来指定一个变量是指针。以下是有效的指针声明:

int    *ip;    /* 一个整型的指针 */
double *dp; /* 一个 double 型的指针 */
float *fp; /* 一个浮点型的指针 */
char *ch; /* 一个字符型的指针 */

所有指针的值的实际数据类型,不管是整型、浮点型、字符型,还是其他的数据类型,都是一样的,都是一个代表内存地址的长的十六进制数。不同数据类型的指针之间唯一的不同是,指针所指向的变量或常量的数据类型不同。

使用指针

使用指针时会频繁进行以下几个操作:

  • 定义一个指针变量

  • 把变量地址赋值给指针

  • 访问指针变量中可用地址的值。

这些是通过使用一元运算符* 来返回位于操作数所指定地址的变量的值。下面的实例涉及到了这些操作:

#include <iostream>

using namespace std;

int main ()
{
int var = 20; // 实际变量的声明
int *ip; // 指针变量的声明

ip = &var; // 在指针变量中存储 var 的地址

cout << "Value of var variable: ";
cout << var << endl;

// 输出在指针变量中存储的地址
cout << "Address stored in ip variable: ";
cout << ip << endl;

// 访问指针中地址的值
cout << "Value of *ip variable: ";
cout << *ip << endl;

return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Value of var variable: 20
Address stored in ip variable: 0xbfc601ac
Value of *ip variable: 20

指针详解

在 C++ 中,有很多指针相关的概念,这些概念都很简单,但是都很重要。下面列出了 C++ 程序员必须清楚的一些与指针相关的重要概念:

概念 描述
C++ Null 指针 C++ 支持空指针。NULL 指针是一个定义在标准库中的值为零的常量。
C++ 指针的算术运算 可以对指针进行四种算术运算:++、—、+、-
C++ 指针 vs 数组 指针和数组之间有着密切的关系。
C++ 指针数组 可以定义用来存储指针的数组。
C++ 指向指针的指针 C++ 允许指向指针的指针。
C++ 传递指针给函数 通过引用或地址传递参数,使传递的参数在调用函数中被改变。
C++ 从函数返回指针 C++ 允许函数返回指针到局部变量、静态变量和动态内存分配。

Null 指针

在变量声明的时候,如果没有确切的地址可以赋值,为指针变量赋一个 NULL 值是一个良好的编程习惯。赋为 NULL 值的指针被称为指针。

NULL 指针是一个定义在标准库中的值为零的常量。请看下面的程序:

#include <iostream>

using namespace std;

int main ()
{
int *ptr = nullptr;
// int *ptr = NULL; // 需要包含cstdlib
// int *ptr = 0;
// 以上三种写法都是等价的,避免了野指针;

cout << "ptr 的值是 " << ptr << endl;
if(ptr){
cout << "ptr不为空" << endl;
}
else{
cout << "ptr为空" << endl;
}

return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

ptr 的值是 0
ptr为空

在大多数的操作系统上,程序不允许访问地址为 0 的内存,因为该内存是操作系统保留的。然而,内存地址 0 有特别重要的意义,它表明该指针不指向一个可访问的内存位置。但按照惯例,如果指针包含空值(零值),则假定它不指向任何东西。

如需检查一个空指针,您可以使用 if 语句,如下所示:

if(ptr)     /* 如果 ptr 非空,则完成 */
if(!ptr) /* 如果 ptr 为空,则完成 */

因此,如果所有未使用的指针都被赋予空值,同时避免使用空指针,就可以防止误用一个未初始化的指针。很多时候,未初始化的变量存有一些垃圾值,导致程序难以调试。

valid * 指针

一种特殊的指针类型,可以存放任意对象的地址

#include <iostream>

using namespace std;

int main()
{
double obj_num = 3.14;
double *ptr_obj = &obj_num;
void *vptr_obj = &obj_num;
cout << (ptr_obj == vptr_obj) << endl;

return 0;
}

运行结果:

1

注意:

  1. void *指针存放一个内存地址,地址指向的内容是什么类型不能确定;
  2. void *类型指针一般用来:拿来和别的指针比较、作为函数的输入和输出;赋值给拎一个void * 指针。

引用

引用变量是一个别名,也就是说,它是某个已存在变量的另一个名字。一旦把引用初始化为某个变量,就可以使用该引用名称或变量名称来指向变量。

指针和引用

引用很容易与指针混淆,它们之间有三个主要的不同:

  • 不存在空引用。引用必须连接到一块合法的内存。
  • 一旦引用被初始化为一个对象,就不能被指向到另一个对象。指针可以在任何时候指向到另一个对象。
  • 引用必须在创建时被初始化。指针可以在任何时间被初始化。
两者的关系
  1. 引用对指针进行了简单封装,底层仍然是指针
  2. 获取引用地址时,编译器会进行内部转换

创建引用

试想变量名称是变量附属在内存位置中的标签,您可以把引用当成是变量附属在内存位置中的第二个标签。因此,您可以通过原始变量名称或引用来访问变量的内容。例如:

int i = 17;

我们可以为 i 声明引用变量,如下所示:

int&  r = i;
double& s = d;

在这些声明中,& 读作引用。因此,第一个声明可以读作 “r 是一个初始化为 i 的整型引用”,第二个声明可以读作 “s 是一个初始化为 d 的 double 型引用”。下面的实例使用了 int 和 double 引用:

#include <iostream>

using namespace std;

int main ()
{
// 声明简单的变量
int i;
double d;

// 声明引用变量
int& r = i;
double& s = d;

i = 5;
cout << "Value of i : " << i << endl;
cout << "Value of i reference : " << r << endl;

d = 11.7;
cout << "Value of d : " << d << endl;
cout << "Value of d reference : " << s << endl;

return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Value of i : 5
Value of i reference : 5
Value of d : 11.7
Value of d reference : 11.7

引用通常用于函数参数列表和函数返回值。下面列出了 C++ 程序员必须清楚的两个与 C++ 引用相关的重要概念:

概念 描述
把引用作为参数 C++ 支持把引用作为参数传给函数,这比传一般的参数更安全。
把引用作为返回值 可以从 C++ 函数中返回引用,就像返回其他数据类型一样。

指针运算

算数运算

指针是一个用数值表示的地址。因此,您可以对指针执行算术运算。可以对指针进行四种算术运算:++、—、+、-。

假设 ptr 是一个指向地址 1000 的整型指针,是一个 32 位的整数,让我们对该指针执行下列的算术运算:

ptr++

在执行完上述的运算之后,ptr 将指向位置 1004,因为 ptr 每增加一次,它都将指向下一个整数位置,即当前位置往后移 4 个字节。这个运算会在不影响内存位置中实际值的情况下,移动指针到下一个内存位置。如果 ptr 指向一个地址为 1000 的字符,上面的运算会导致指针指向位置 1001,因为下一个字符位置是在 1001。

递增一个指针

我们喜欢在程序中使用指针代替数组,因为变量指针可以递增,而数组不能递增,因为数组是一个常量指针。下面的程序递增变量指针,以便顺序访问数组中的每一个元素:

#include <iostream>

using namespace std;
const int MAX = 3;

int main ()
{
int var[MAX] = {10, 100, 200};
int *ptr;

// 指针中的数组地址
ptr = var;
for (int i = 0; i < MAX; i++)
{
cout << "Address of var[" << i << "] = ";
cout << ptr << endl;

cout << "Value of var[" << i << "] = ";
cout << *ptr << endl;

// 移动到下一个位置
ptr++;
}
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Address of var[0] = 0xbfa088b0
Value of var[0] = 10
Address of var[1] = 0xbfa088b4
Value of var[1] = 100
Address of var[2] = 0xbfa088b8
Value of var[2] = 200

递减一个指针

同样地,对指针进行递减运算,即把值减去其数据类型的字节数,如下所示:

#include <iostream>

using namespace std;
const int MAX = 3;

int main ()
{
int var[MAX] = {10, 100, 200};
int *ptr;

// 指针中最后一个元素的地址
ptr = &var[MAX-1];
for (int i = MAX; i > 0; i--)
{
cout << "Address of var[" << i << "] = ";
cout << ptr << endl;

cout << "Value of var[" << i << "] = ";
cout << *ptr << endl;

// 移动到下一个位置
ptr--;
}
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Address of var[3] = 0xbfdb70f8
Value of var[3] = 200
Address of var[2] = 0xbfdb70f4
Value of var[2] = 100
Address of var[1] = 0xbfdb70f0
Value of var[1] = 10

指针比较

指针可以用关系运算符进行比较,如 ==<>。如果 p1 和 p2 指向两个相关的变量,比如同一个数组中的不同元素,则可对 p1 和 p2 进行大小比较。

下面的程序修改了上面的实例,只要变量指针所指向的地址小于或等于数组的最后一个元素的地址 &var[MAX - 1],则把变量指针进行递增:

#include <iostream>

using namespace std;
const int MAX = 3;

int main ()
{
int var[MAX] = {10, 100, 200};
int *ptr;

// 指针中第一个元素的地址
ptr = var;
int i = 0;
while ( ptr <= &var[MAX - 1] )
{
cout << "Address of var[" << i << "] = ";
cout << ptr << endl;

cout << "Value of var[" << i << "] = ";
cout << *ptr << endl;

// 指向上一个位置
ptr++;
i++;
}
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

Address of var[0] = 0xbfce42d0
Value of var[0] = 10
Address of var[1] = 0xbfce42d4
Value of var[1] = 100
Address of var[2] = 0xbfce42d8
Value of var[2] = 200

指针vs数组

指针和数组是密切相关的。事实上,指针和数组在很多情况下是可以互换的。例如,一个指向数组开头的指针,可以通过使用指针的算术运算或数组索引来访问数组。请看下面的程序:

#include <iostream>

using namespace std;
const int MAX = 3;

int main ()
{
int var[MAX] = {10, 100, 200};
int *ptr;

// 指针中的数组地址
ptr = var;
for (int i = 0; i < MAX; i++)
{
cout << "var[" << i << "]的内存地址为 ";
cout << ptr << endl;

cout << "var[" << i << "] 的值为 ";
cout << *ptr << endl;

// 移动到下一个位置
ptr++;
}
return 0;
}

当上面的代码被编译和执行时,它会产生下列结果:

var[0]的内存地址为 0x7fff59707adc
var[0] 的值为 10
var[1]的内存地址为 0x7fff59707ae0
var[1] 的值为 100
var[2]的内存地址为 0x7fff59707ae4
var[2] 的值为 200

然而,指针和数组并不是完全互换的。例如,请看下面的程序:

#include <iostream>

using namespace std;
const int MAX = 3;

int main ()
{
int var[MAX] = {10, 100, 200};

for (int i = 0; i < MAX; i++)
{
*var = i; // 这是正确的语法
var++; // 这是不正确的
}
return 0;
}

把指针运算符 * 应用到 var 上是完全可以的,但修改 var 的值是非法的。这是因为 var 是一个指向数组开头的常量,不能作为左值。

由于一个数组名对应一个指针常量,只要不改变数组的值,仍然可以用指针形式的表达式。例如,下面是一个有效的语句,把 var[2] 赋值为 500:

*(var + 2) = 500;

上面的语句是有效的,且能成功编译,因为 var 未改变。